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i. Introduction. One of the main problems of the theory of disperse mixtures in the 
study of physical fields consists of correct accounting of the mutual effect of inclusions. 
In real heterogeneous media this problem is compounded by the difference in shapes and size 
of inclusions, the diversity of structures formed by them, and the difference in material 
properties of the constituent components and the carrying phase. In view of the diversity 
of governing factors, field calculations in inhomogeneous media have practically not been 
performed, and to simplify the calculations it is necessary to adopt a number of assumptions. 
If, for example, the characteristic sizes of inclusions are small and do not differ much 
from each other, it is usually assumed that all elements of the disperse phase are identical 
and usually have the shape of spheres, ellipsoids, or cylinders. As is well known, the 
field in thus separately selected bodies is homogeneous when they are placed in a homogeneous 
external field. This property is used in investigating heterogeneous media with a low inclu- 
sion concentration. If, moreover, the characteristics of the inclusion material vary within 
narrow limits, they can be assumed to be of one type. Thus, within the first approximation 
the disperse mixture is treated as two components or, in the general case, a two-phase system 
consisting of a matrix and one-kind inclusions. 

For three-component media with two-size inclusions the field problems become multipara- 
metric, and their solution is extremely complicated. The concept of generalized parameters 
of such heterogeneous systems and explaining the nature of processes occurring in them can be 
obtained by analyzing several model problems. The present study is devoted to solving one of 
the similar problems, resulting from the study of inhomogeneous films o~ thin coatings (these 
results are also valid for bulk composites, identically hardened by oriented filaments, if 
the fields are calculated in the transverse plane). 

The problem of determining the electric field in a conducting medium, containing two 
arbitrarily located circular inclusions and electrical resistances of different radii is 
solved. In the presence of an external magnetic field the Hall effect may appear in all three 
components. It is noted that this problem was investigated algebraically in [i, 2] by using 
R-functions in the case of intersecting single-type inclusions. 

In the present study the required two-dimensional electric field is effectively cal- 
culated by methods of the theory of complex variables, allowing one to obtain a closed analytic 
solution without any restrictions on the problem conditions. Though calculations are carried 
out for the electric field, due to known analogies one can investigate thermal, diffusion, 
magnetic field, and other physical field equations quite similarly. 

2. Statement and Solution of the Problem. In an unconfined medium with specific elec- 
tric resistance P0, let there be two circular inclusions with radii r I and r 2 and resistances 
Pl and P2, respectively (Fig. la). The centers of the circular inclusions are located at the 
points z = 0 and z = h > r I + r 2 (z = x + iy). It is necessary to find the current distribu- 
tion inside the inclusions and in their neighborhoods for an arbitrary direction of the exter- 
nal current J, which is assumed given. 

In each of the three regions the vectors of current density J and electric field in- 
tensity E are potential and solenoidal; therefore, in the complex variable z plane one can 
introduce the holomorphic functions j(z) = jx(X, y) - ijy(X, y) and E(z) = Ex(x, y) - iEy(x, 
y), the relation between them given by Ohm's law E(z) = pj(z), coinciding in shape, due to 
the reality of the parameter p, with the vector form E=pj. The field equations rot E=O 
and div j = 0 lead in this case to the Cauchy-Riemann conditions for the functions j(z) and 
E(z). 
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Fig. i 

The ohmic contact conditions are satisfied at the boundary of various type media, con- 
tinuity of the normal components of the current vector j and of the tangential components 
of the field vector E. 

Thus, in the plane z = x + iy it is necessary to determine the piecewise-holomorphic 
function 

[/o(Z), Z~So = {z: I z l > h ,  I z - - h l > r J ,  
/(@ = | / l (z) ,  z~S~={z:lzl<rO, ( 2 . 1 )  

t/~ (z), z ~ S~ = {z : I ~ -  h l < , ~ } ,  

satisfying the boundary conditions 

Re {n(t)jo(t) } ---- Re {n(t)]k(t) }, ( 2 . 2 )  
Im{n(t)po]o(t)} = Im{n(t)ph]k(t)}, t ~ Lk ( k -  i,2). 

Here  n ( t )  i s  t h e  u n i t  normal  t o  t h e  c o n t o u r :  L----L1UL2: 

n(t)----t, t--' rle ie, t ~ L i ,  
r l  

n( t )= t - - -Jh  t h + r 2 e  te, t ~ L  z, 0 ~ 0 < 2 ~ .  
r I 

2 

On t h e  b a s i s  o f  t h e  l a s t  e q u a l i t i e s  and t h e  i d e n t i t i e s  {-----r~/t�93 t ~ L1, t -  h ----r~/(t-  h), 
t ~  L~, o b t a i n e d  by an i n v e r s e  t r a n s f o r m a t i o n ,  t h e  bounda ry  c o n d i t i o n s  ( 2 . 2 )  can be r e w r i t t e n  
in  expanded  form 

( 2 . 3 )  
[ ' ,  ~'-" q ~" t  o(0 + ,o (0 = 1 , . ( t ) +  

The bar over a variable or a function denotes complex conjugation. 

The external electric current J flowing in the system is given by its value at infinity 

](co) = j0(~) = J = ]x-- iJu. (2.4) 

The boundary conditions are somewhat simplified if from each pair of equalities (2.3) 
one eliminates the function j0(t): 

2e0& (0 = (p0 + p~) 1~ (t) + (p0 - pl) 
( 2 . 5 )  

It is easily shown that conditions (2.3) and (2.5) are equivalent. The boundary-value problem 
(2.5) refers to a special case of the Markushevich problem, or, as it is also called, the 
general coupling problem [3, p. 222]. 
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For subsequent analysis of the results it is convenient to introduce the relative values 
of specific resistances of the inhomogeneous inclusions 

Ao~ = (Po-- Ph)l(Po'F PD, - - i  ~< Ao~< i (k = 1, 2). 

The boundary relations (2.5) acquire then the form 

(t -b Aol)/o(t) = ]~(t) -{- Aol(q/0~(0,  t ~ LI,. ( 2 . 6 )  
( i  + Ao,)io(t) = h( t )  + Ao,(~/( t  - -  h))U~(t)~ t ~ L, .  

Below we provide a solution of the boundary-value problem (2.6), which, unlike the gen- 
eral case of the Markushevich problem, can be constructed explicitly. It is first necessary 
to map conformally the exterior of the circular inclusions S o on a concentric ring. This 
mapping is realized, as is well-known, by the fractionally linear function 

~ = T'i(z) = ~--0:i)/~-ms), ~ = ~-~i~, (2.7) 

where x I and x2 are symmetric points with respect to both surroundings L~ and L2: 

z ~  = n ~, 0 - ~ ) ~  - ~ = r? ,  ( 2 . 8 )  

According to equalities (2.8), the points x~ and x 2 are located on the real Ox axis in the 
circular regions S~ and $2, respectively, and have coordinates 

~ , ,  = (!12h) {h s + q '  --  r , '  :F }/(h '  + ~ --  ~gz --  4hZr,'}. ( 2 . 9 )  

The i n v e r s e  mapping i s  g i v e n  by t h e  f u n c t i o n  

z = r ( O  = @ ~  - zO/(~ - i ) .  ( 2 . 1 0 )  

The p o i n t  p o s i t i o n  f o r  mapping ( 2 . 7 )  i s  shown in  F i g .  l a ,  b. In  t h i s  ca se  t h e  r a d i i  of  
t h e  s u r r o u n d i n g s  Xz and X2, i n t o  which t h e  n e i g h b o r h o o d s  Lz and L 2 t r a n s f o r m ,  a r e  d e t e r m i n e d  
by t h e  e q u a t i o n s :  

7~ = ]/'x~--~, 7,  = ] / ~  - -  z l ) /@ - -  x,)  (71 < l ,  7,  > l),  (2 .11  ) 

and t h e  p o i n t  a t  i n f i n i t y  z = ~ t r a n s f o r m  to  t h e  p o i n t  ~ = 1, i . e . ,  i t  i s  l o c a t e d  in  t h e  
ring ~1 < ]~l < ~2. 

In the transformed region the problem reduces to searching a piecewise-holomorphic func- 
tion 

[fo (~), ~ ~ no ={~: n < ~ < ?,}, 
( 2 . 12 )  

Based on Eqs. (2.4) and (2.6), the following boundary-value problem is obtained for the func- 
tion f(~) 

(i + A0z ) lo (~) = 11 (~) + ~ \r (,)1 l, (~), ~ ~ ~z, 

[ ,., 'l, I ( 2 .13 )  
('1 + Ao,)/o(~ ) = I,(~) + Ao, k ~  ] .,(~); ~ ~,,, l ( i ) = / o ( l ) = J ' .  

From the possibility of expanding the function f0(~) in a Laurent series it follows 
that it admits the representation 

1o(~) = Io+(0 q- lo-'(~), ( 2 . 1 4 )  

where the functions f+(~) and fo(~) are holomorphic in the regions {~: I~I< ~,} and {~:I~I > ~i}, 
respectively. Without loss of generality one can put 

/ o+(0  = o, 1o-0)  = I .  ( 2 . 1 5 )  

With account of the partitioning (2.14), the boundary conditions (2.13) are transformed 
to the form 

+ Ao0So+(O-sl(,) = Aol( y1 - 0 + Ao,)  (,), (1 
(2.16) r 2 

+ i ,o:) = 0 + Ao,)1:(,), 

From relations (2.16) and the theorem of analytic continuity it follows that the functions 
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[{1 + Ao,)~(~_- s,m, 
rl 2 ~?~ ++=/~'o, (~))', iT)-  o+ ,,o,>; +, 

/ 0 + ,,o,)sr (~>- s2 m, 

"+: / "o,  ( ~ d , ,  {-7)-o + "o,> ~+, '~' 
are holomorphic in the whole ~-plane, since the functions 1~(?12/~) 

rdr(~) = 7 d ~  - 1)I(4 - Yd) 

are holomorphic at ]~]> ?~, while ]a(722/~ and 

are holomorphic for I~I < Yi. 

By the Liouvil le theorem 

rd(T(~)- h )  = - - y , ( ~  - -  1)I(~ - -  7~") 

l ~ l < n ,  

l ~ l > n ,  

<?2 

and 

(2.17) 

(2.18) 

( 2 . 1 9 )  

�9 (~) - -  C1, ~(~) --~ C2 ( 2 . 2 0 )  

(C 1 and C 2 a r e  complex c o n s t a n t s ) .  P u t t i n g  in  Eqs.  ( 2 . 1 7 )  and ( 2 . 2 0 )  ~ = 1, on t h e  b a s i s  o f  
e q u a l i t i e s  ( 2 . 1 5 )  and ( 2 . 1 8 ) ,  ( 2 . 1 9 )  one e a s i l y  o b t a i n s  

C1~ --(I + A01)J, C2 = 0. (2.21) 
Thus, Eqs. (2.17) acquire the form 

( I +  Aol)~(~)--ll(~)------(l + &I)G l ~ I < n ,  

,~o, - ( t  + = + I l l> ' , , , , . ,  
\ ~ / ( 2 . 2 2 )  

(I + a.) Io-r & (~) = 0, I~I> ~,, 

"o, (, +"_ h )~,, ({- ) <~§ .~,<,,,. 
From relations (2.14) and (2.22) follows the validity of the following representation 

of the piecewise-holomorphic function (2.12) : 

(1 + ao,){a + ~(~) l ,  I~ l<Y, ,  
I (~ ) - -  I + r  + I ; r  . " ~ < I ~ I  < 1'2, ( 2 .23 )  

~(I + ao,) I ; r  IZ;l>'~2 

The functions f+(r are found from expressions (2.22), where to the second and third 
of them one applies an inversion transformation with respect to the neighborhoods 71 and ~2, 
respectively. Expressions (2.22) acquire then the form 

(i + Ao010+G)- I,(~)= - 0  + ao0z, I~I < n, 

,,o,(~)',,+-(, +,,oQ,o(~/= o +,,o,)7, ,~,<,,, 
\ ~ / ~ (2.24) 

( , ) ,  (~) ao, N~F-  h I, - ( i  + ao,) ~ (~) --  o, I El < ~,,. 

From the first pair of expressions (2.24) one can eliminate the function f1(~), and from the 

second, ~2(?22/~). As a result we have the relations 

( 2 . 2 5 )  

(~) . (~ ) . , o++=0  .~.<, S; - ao--; 
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Hence, following elimination of the function ft(~) and some easy transformations taking into 
account Eqs. (2.18) and (2.19), the following functional equation is obtained 

where 

/o(~) or +~0~7 ~ - ~  ' (2.26) 

r =  ~' ~/5~:=.) (2 27) v~ = ~, (~ - ~) < i .  

Before turning to solve Eq. (2.26), it can be proved that it, implying also problem 
(2.13), cannot have more than a single solution. Indeed, the opposite would imply that Eq. 
(2.26) has a nontrivial solution for J = 0. The latter is impossible, since for J = 0 and 

= ~ we find from Eq. (2.26) ~-(0 = A0~A0~r~0-(oo), whence due to the inequality IAo~Ao~r~l<i 
and the boundedness of f~(~) it follows that f~(~) = 0. From this it follows, in turn, the 
holomorphicity near infinity of the function %(~)= ~f0-(~), satisfying, due to Eq. (2.26) 
(J = 0), the relation 

comparing left and right hand sides of which for $ = co gives %(oo)= 0. Similarly, one sub- 
sequently shows the holomorphicity near infinity of the functions ~h(~) = ~k/0-(O and the equal- 
ity ~k(oo)= 0 (k = 2, 3,...), which, obviously, is equivalent to the statement made above. 

By the method of mathematical induction it is shown that as a result of eliminating the 

functions /0-(r-~), k = i, n- I, from the set of n equations obtained from (2.26) by replacing 

by F-2k~, k =0~ n--i, Eq. (2.26) leads to 

1~ (~)----~ {(A~176 [ , [ ~ - I k = o  k~ -- r'~J ~' + -YA~ (~--1~ --- ? ~ ) ' J }  + (Ao~Ao~r')" ( ~ ) '  f~ (r-"~), , ~j, > ? , . ~  _ (2.28) 

Transforming in Eq. (2.28) to the limit n § co, for the function fo(~) we obtain the expres- 
sion 

)~-0 (~)----" (AolAo2r~)~ J ~,--~-~ " [ " J A o l ' ~ I  _v~r .~/  l /  l~I>?~" (2 .29)  
JL / J /  

Knowing f~(~), 
tions (2.25): 

The series (2.29) converges absolutely and uniformly due to the inequalities 

max <maxl ~--t I - "tl-+-t ~ ' t l+t  

one easily determines the function f0+(~) by turning to any of the two rela- 

f ~.r , r -h  \3 7 f / ' 1 1 ,  ' :  + ]j', (2.30) 

On the basis of Eqs. (2.29), (2.30) the piecewise-holomorphic function f(~) is now recon- 
structed according to the representation (2.23). The inverse mapping to the physical plane 
z = x + iy makes it possible to find the required current distribution inside the in- 
clusions and in their neighborhoods. Finally, the calculations lead to the equations 

[c 
,k:l~ . L . : - r ( r - , ~ ) / J  ~ \ , - ~ k ) )  j j T  

+ <AolA,,)  +( o<r+ /' Z /  I , l>r, ,  
k : - r ( r "~ ) /  + ~o,U-  r (~."r,~)) j l l '  l : - h l > r : .  

<rl, 

< r 2 �9 

(2.31) 
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Here Q(w) = w/(l - w2), and the remaining notations are given by expressions (2.9)-(2.11) 

and (2.27). 

Equations (2.31), despite their awkward appearance, really have a simple structure 
and a clear physical interpretation. The current distribution outside the exclusion region 
S o contains a constant component J, whose value is acquired at infinity, and dipole compo- 
nents at the points T('). One pair of dipoles with coordinates T(F 2k) and T(72r 2k) is lo- 
cated on the segment [0, x l] of the real axis. With increasing power k the absolute values 
of the dipole moments decrease, and the dipoles are displaced from the center of the cir- 
cular inclusion 0 toward the point Xl, which is a vanishing point for the dipoles. Another 
pair of dipoles has coordinates T(F zk) and T(y2F2k), i.e., is located on the segment [x 2, h] 
of the real axis. In this case, with increasing power k the dipoles are compressed toward 
the point x2, while the absolute values of their moments decrease in this case. Thus, the 
mutual effect of inhomogeneous inclusions in a continuous medium is displayed in the dipole- 
dipole interaction. 

The current distribution near the inclusions has a power dependence on the inclusion 
radii r I and r2, the distance between them is h, and on the relative specific inhomogeneity 
resistances A01 and A0=. Most differences in the current distributions are observed in di- 
rections of the external current J along the Ox and Oy axes, i.e., for subsequent alterna- 
tion of the inclusions and their parallel arrangement with respect to the current J. 

Inside the inclusions the expressions for the current contain constant components (i + 
A0k)J (k = I, 2), corresponding accurately to the current distribution in a separately se- 
lected circular inclusion in the absence of the other. These current components do not ex- 
ceed in magnitude twice the current value J at infinity, and coincide with them in direction. 
The action of the inclusions on each other is manifested in that there exist additional cur- 
rent components, represented by dipoles which are located near the given inclusion. The 
dipoles are, accurately within the factor (i + A0k), the same as in the expression for the 
current in the exterior of the inclusion region. The current inside adjacent inclusions can 
exceed 2J for certain relations between the system parameters. 

It is necessary to stress that the absolute values of the dipole moments decrease 
sharply with increasing power k, and that the main contribution to the current value is pro- 
vided by dipoles located in the centers of the circles. As shown by direct calculations, 
this property is manifested in a wide variation of all parameters appearing in the current 
expression. Therefore, in many practical calculations it is sufficient to confine oneself 
to the first approximate equation of (2.31) only 

{ [~.,.A r ~ Ao~r~ / 
+ So, t z . ~ (z-h)----~/' z 

! { _ .  Ao~r~ , , (2.32) 
f(z)= (t+AoO Y+J(z_h)21~lzl<rx, 

(t + Ao,){J + J - ~ } ,  Iz-h]<r,. 

These equations are convenient to use, and have a simple physical interpretation. If in 
expression (2.31) one transforms to one of the three limits: r 2 + 0, h~, or A02 + 0, they 
provide the solution for the case of a single inclusion [4]. Such a smoother transition is 
displayed in Eqs. (2.32). 

To represent the features of the current distribution inside inclusions and in their 
neighborhoods we show in Fig. 2 plots of the relative magnitude of the current density vector 
on the Ox axis, constructed by Eq. (2.31) under the following conditions. The external cur- 
rent vector J is along the Ox axis (J = Jx), i.e., the inclusions alternate successively with 
respect to the vector J. The current density vector has then only one component along the Ox 
axis j(x) = jx(x), and its relative magnitude is j* = j/J = jx/Jx. In the computer calcula- 
tions it was assumed that both inclusions have identical radii r, and that the distance be- 
tween their centers is h = 3r. 

Curves i-3 correspond to equal specific inclusion resistances. Curve i corresponds to 
the case in which the specific resistances of the inclusions are identical and less in mag- 
nitude than the resistance of the fundamental component (0~ = 02 < P0, A0~ = A02 = 0.5), 2 
was constructed under the condition that the inclusions have different specific resistances: 
Pl, Pz < P0, Aol = 0.5, A02 =--0.5, while 3 also refers to the case of identical conducting inclu- 
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sions, but under the condition that their specific resistance exceedthe resistance of the medium 
in which they are submerged (01 = P2 > P0, A01 = 4o2 = -0.5). 

As could be expected, inclusions with high conductivity concentrate the current inside 
them; the current flows away from low-conducting inclusions. The nature of the mutual in- 
clusion effect on the current distribution can be concluded by comparing curves 1-3 with 
curves 4 and 5, constructed for the case in which there exists only one inclusion of radius 
r with center at the origin of coordinates, having relative specific resistances 401 = 0.5 
and -0.5 (curves 4, 5). Compared with an isolated inclusion, the current concentration in 
mutually interacting inclusions is enhanced or reduced, depending largely on the specific 
inclusion resistances. Qualitatively, this is also verified by direct computer calculations, 
whose results are given in [I, 2]. 

It is interesting to note that the calculations for constructing curves 1-3 by the exact 
(2.31) and approximate (2.32) equations differ by approximately 1%. Thus, the first series 
terms in expressions (2.31) provide the main contribution in the calculations. 

3. Account of the Hall Effect. The solution method discussed is also fully applicable 
to studying problems with anisotropic conductivity, when the material anisotropy is caused 
by Hall effects in a magnetic field B = {0, 0, B}, B = const. In this case the specific electric 
resistance has a tensor representation, and the Ohm law acquires the form E(z) = ~j(z) [~ = 
p(l + i8), ~ is the Hall parameter]. With account of the complex specific resistance the 
boundary conditions (2.2) have a different shape: 

Re{n(t) ]o(~} = Re{n(t) ]h(t)  }, 

Im{n(t)pjo(t)}= Im{n(t~],(t)}, t ~ L h ~ = i ,  2). ( 3 . 1 )  

I n  what  f o l l o w s  t h e  b e h a v i o r  o f  t h e  s o l u t i o n  o f  p rob lem ( 3 . 1 )  r ema ins  as  p r e v i o u s l y ,  and 
t h e  f i n a l  r e s u l t  i s  w r i t t e n  down by Eqs.  ( 2 . 3 1 )  and ( 2 . 3 2 ) ,  w i t h  t h e  o n l y  d i f f e r e n c e  t h a t  t h e  
s c a l a r  q u a n t i t i e s  &0k must  be r e p l a c e d  by t h e  complex q u a n t i t i e s  A0k + &0k [A0k = (&ok - 
i B 0 k ) / ( 1  + iB0k) (k = 1, 2 ) ] .  Here B0k a r e  t h e  r e d u c e d  v a l u e s  o f  t h e  H a l l  p a r a m e t e r :  B0k = 
(P0~0 - Pk~k) / (P0  + Pk)- 

I n  a medium w i t h  a H a l l  e f f e c t  t h e  c u r r e n t  d i s t r i b u t i o n  p a t t e r n  i s  more c o m p l i c a t e d ,  and 
has  i m p o r t a n t  f e a t u r e s .  F i r s t l y ,  i f  t h e  f o l l o w i n g  r e l a t i o n  i s  s a t i s f i e d  P0~0 = Pk~k [due t o  
t h e  e q u a t i o n  ~k = (1/p)RHkB t h i s  i s  e q u i v a l e n t  t o  t h e  e q u a l i t y  o f  H a l l  c o e f f i c i e n t s :  RH0 = 
RHk], t h e n  B0k = 0, ~0k = b0k, and t h e  e x t e r n a l  m a g n e t i c  f i e l d  has  no e f f e c t  w h a t s o e v e r  on 
t h e  c u r r e n t  d i s t r i b u t i o n .  S e c o n d l y ,  which  i s  p a r t i c u l a r l y  i n t e r e s t i n g ,  f o r  u n r e s t r i c t e d  
g rowth  in  t h e  m a g n e t i c  f i e l d  and i n c r e a s e  in  r e d u c e d  H a l l  p a r a m e t e r s  B0k t h e  c u r r e n t  f l o w s  
f rom t h e  i n c l u s i o n s  i n d e p e n d e n t l y  o f  t h e i r  r e s i s t a n c e s ,  and in  t h e  l i m i t  B0k § = i t  behaves  
as  in  t h e  c a s e  o f  f low in  a c o n d u c t i n g  medium w i t h  d i e l e c t r i c  i n c l u s i o n s .  

Thus,  t h e  s y s t e m  c o n s i d e r e d  p r o v i d e s  one o f  t h e  few t h r e e - c o m p o n e n t  examples  o f  an i n -  
homogeneous medium, f o r  which  one can o b t a i n  e x a c t  a n a l y t i c  r e s u l t s .  To s t u d y  t h i s  s t r u c t u r e  
i t  has  been e s t a b l i s h e d  t h a t  t h e  e f f e c t  o f  i n c l u s i o n s  on each  o t h e r  has  t h e  n a t u r e  o f  d i p o l e -  
d i p o l e  i n t e r a c t i o n .  I n  t h e  p r e s e n c e  o f  a l a r g e  number o f  i n c l u s i o n s  t h e  p rob lem i s  s u b s t a n -  
t i a l l y  more c o m p l i c a t e d ,  and does  n o t  admi t  s o l u t i o n  by r e l a t i v e l y  s i m p l e  me thods .  To some 
e x t e n t  t h e  s i t u a t i o n  i s  s i m i l a r  t o  t h a t  e n c o u n t e r e d  in  many-body m e c h a n i c s .  The s o l u t i o n  
d i f f i c u l t i e s ,  i n c r e a s i n g  w i t h  t h e  number o f  i n t e r a c t i n g  i n c l u s i o n s ,  a r e  p a r t i a l l y  overcome by 

27 



considering several symmetric structures in systems with a regular disperse phase distribu- 
tion [4]. 
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COOLING OF A MAGNETIZED PLASMA AT A BOUNDARY WITH AN EXPLODING METAL WALL 

S. F. Garanin and V. I. Mamyshev UDC 533.932 

Cooling of a magnetized plasma at the boundary with a cold wall, which is accompanied 
by reaction of magnetic and thermal processes, leads in a number of cases to anomalously 
high effective thermal conductivity and magnetic diffusion coefficients. With cooling of a 
hydrogen plasma at a boundary with an insulator or a dense multicharged plasma, the effec- 
tive thermal conductivity appears to be of the order of Bohm thermal conductivity [i, 2]. 

With cooling of a plasma bounded by a rigid and ideally conducting wall, as was shown 
in [i], the increase in thermal conductivity compared with classical magnetized thermal con- 
ductivity is less marked and it is only possible for a plasma with ~ >> 1 (6 = 16~NoT0/H0 2 is the 
ratio of thermal pressure of the plasma to magnetic pressure; N o , T o , and H 0 are density of 
electrons, temperature, and magnetic field in the plasma at a distance from the boundary). 
A metal wall may be considered to be rigid and ideally-conducting in the case when it does 
not explode due to action of heat flow from the plasma, i.e., its thermal conductivity in 
the condensed phase appears to be sufficient in order to remove heat without evaporating. 
This condition is fulfilled with relatively high energy densities (for plasma with T O = I 
keV and ~ = i, with H 0 < 0.2 MG). With higher energy densities presence of an explosive heat 
flow for the metal markedly changes the nature of cooling and it increases heat losses for 
the plasma. This case is considered in the present work. However, the magnetic fields are 
not considered to be very high (H 0 > i0 MG) since with H 0 < i0 MG when there is explosion 
of a skin layer by Joule heat and the metal loses conductivity, the problem is reduced to 
that considered previously [I, 2] of plasma cooling at a boundary with an insulator. 

Let all of the values depend on coordinate X perpendicular to the metal surface, and time 
t, magnetic field H, and electric field E are perpendicular to each other and axis X, and 
characteristic times are large compared with gas dynamic times, so that total pressure both 
in the hydrogen plasma and in metal vapor have time to equalize: 

p +  ~ / 8 ~  = Po - 2NJ'o + ~18~ (0. i )  

(p is thermal pressure). Equations for the magnetic and electric fields and the thermal 
balance for the plasma [3] are written in Lagrangian variables, and have the form 

O'-X=-- c \ t i t  p ' 0"-~ c E = j / 6 - - ~ - ~ - f .  ( 0 . 2 )  

dg p d p _  OQ ._~ ]E, Q aT bA~ 
P d t  p d t  O'-X --- - -  X ~ -t- ], 

where 9 is density of the mass; c is internal energy; o, X, bA are transverse conduction, 
themal conductivity, and thermoelectric coefficients; Q is density of heat flow. 

i. Cooling of a Dense Plasma. As shown in [I], existence of anomalously high effective 
thermal conductivity coefficients means that the problem for a hydrogen plasma is quasista- 
tionary: hydrogen plasma density in the boundary zone is large compared with density N 0, and 
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